top of page
Rationale for Module Sequence in Grade 6

 

In Module 1, students build on their prior work in measurement and in multiplication and division as they study the concepts and language of ratios and unit rates. They use proportional reasoning to solve problems. In particular, students solve ratio and rate using tape diagrams, tables of equivalent ratios, double number line diagrams, and equations. They plot pairs of values generated from a ratio or rate on the first quadrant of the coordinate plane.

 

Students expand their understanding of the number system and build their fluency in arithmetic operations in Module 2. Students learned in Grade 5 to divide whole numbers by unit fractions and unit fractions by whole numbers. Now, they apply and extend their understanding of multiplication and division to divide fractions by fractions. The meaning of this operation is connected to real-world problems as students are asked to create and solve fraction division word problems. Students continue (from Fifth Grade) to build fluency with adding, subtracting, multiplying, and dividing multi-digit decimal numbers using the standard algorithms.

 

Major themes of Module 3 are to understand rational numbers as points on the number line and to extend previous understandings of numbers to the system of rational numbers, which now include negative numbers. Students extend coordinate axes to represent points in the plane with negative number coordinates and, as part of doing so, see that negative numbers can represent quantities in real-world contexts. They use the number line to order numbers and to understand the absolute value of a number. They begin to solve real-world and mathematical problems by graphing points in all four quadrants, a concept that continues throughout to be used into high school and beyond.

 

With their sense of number expanded to include negative numbers, in Module 4 students begin formal study of algebraic expressions and equations. Students learn equivalent expressions by continuously relating algebraic expressions back to arithmetic and the properties of arithmetic (commutative, associative, and distributive). They write, interpret, and use expressions and equations as they reason about and solve one-variable equations and inequalities and analyze quantitative relationships between two variables.

 

Module 5 is an opportunity to practice the material learned in Module 4 in the context of geometry; students apply their newly acquired capabilities with expressions and equations to solve for unknowns in area, surface area, and volume problems. They find the area of triangles and other two-dimensional figures and use the formulas to find the volumes of right rectangular prisms with fractional edge lengths. Students use negative numbers in coordinates as they draw lines and polygons in the coordinate plane. They also find the lengths of sides of figures, joining points with the same first coordinate or the same second coordinate and apply these techniques to solve real-world and mathematical problems.

 

In Module 6, students develop an understanding of statistical variability and apply that understanding as they summarize, describe, and display distributions. Careful attention is given to measures of center and variability.

Our objective in mathematics is to create an atmosphere that balances basic skills and conceptual understanding. We want our students to build new mathematical ideas and practice application. Through the workshop model, students explore, make discoveries, reflect, and communicate their ideas. Students follow the National Common Core Curriculum Standards, and have ninety minutes of math instruction daily. Advanced math classes are offered in the 8th grade. Students bolster and grow math skills through ALEKS, an interactive web-based learning system.

MATHEMATICS

bottom of page